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Abstract In the present study a specific kind of widespread mathematical objects:
descriptor matrices are defined and studied. These are matrices connected with sev-
eral problems concerning many fields of interest in theoretical chemistry, classical and
quantum mechanics, or quantitative structure-properties relations. The twofold dimen-
sionality structure of descriptor matrices is analyzed and the properties of descriptor
matrices are also disclosed with respect origin shifts and rotations. A tensor to study
schematically the three dimensional nature of many particle structures, the character-
istic form tensor is defined. The construction of similarity matrices from descriptor
matrices and the connection with quantum similarity are finally discussed.

Keywords Twofold dimensionality · Many particle position spaces · Conformational
molecular spaces · QSPR descriptor spaces · Origin shift of vectors sets · Complexes ·
Chemical object spaces · Descriptor matrices · Dimensionality paradox · Characteristic
form tensor · Similarity matrices · Quantum similarity · Quantum similarity matrices

1 Introduction

Several studies concerning the so-called dimensionality paradox in the field of quan-
titative structure-properties relations (QSPR) and the theory and practice of quantum
QSPR (QQSPR) have been recently published [1,2]. At the same time, some printed
theoretical papers also deal about the origin shift technique applied within quantum
object sets (QOS) [3–6], with an obvious extension involving classical descriptor para-
meters, see for example reference [2]. In the two mentioned work series, the theoretical
structure of quantum similarity (QS) in general and molecular QS (MQS) in particular
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[4,7], have a relevant role. Even more recently, a discussion over the definition of
chemical and molecular spaces also appeared [8], followed by an attempt to describe
the concept of molecular universes [9] as a way to clarify as much as possible the basic
background of the QSPR subject.

The present work is related to all the quoted direction lines and will try to advance
in the analysis of the description based on a geometric viewpoint of both position of
particles and discrete representation of molecular sets. This project will be performed
by means of some general kind the matrices which will be called descriptor matrices.
In order to achieve this goal, the present contribution will be organized as follows.
The statement of the mathematical background will be given first as a way to provide
basic definitions and mathematical notation. Next the geometrical point of view of
the problem will be discussed; in this part the origin shift technique and the so-called
dimensionality paradox will be introduced. In the next section origin shifts will be
exhaustively applied into the object spaces by using vertex shifts and the relevant
results discussed. In the next section origin shifts using convex combinations of vertex
coordinates will be discussed; origin shift via the centroid of the vertex set will be also
studied as a particular case. In the next section will be discussed the many dimensional
rotations of the involved descriptor matrix elements. A following section will discuss
the possibility to construct square matrices from the descriptor matrices; based in the
twofold dimensionality the adequate candidates are the corresponding Gram matrices
associated to the vectors of both associated spaces. Next section will be finally devoted
to the construction of similarity matrices by means of descriptor matrices and its
connection with quantum similarity matrices.

2 Statement of the mathematical background

This first section describes the data structure which will be met in the problems dis-
cussed hereafter. It is a trivial matter to set up such data formalism, but it is initially
presented here as a way to also set up the notation which will be used through the
present study.

The ordering of the involved objects, which will be described in several ways
ending at the same formal structure, is arbitrary and it is supposed that do not have
any influence in the properties of the matrices which will be discussed henceforth.

Two apparently diverse situations can be present.1 One can consider first three-
dimensional position space location of N equal or different particle sets, as appear
in Monte Carlo procedures or alternatively when setting molecular conformations
respectively. In second term one can be using some kind of M-dimensional spaces as
the container of N molecular structures, when constructing the discrete representation
of molecular sets by means of the so-called descriptor parameters.

Then, in general it can be said that these aforementioned situations as a whole
correspond to the construction of formally similar mathematical objects. This is so as

1 In fact, there must be also considered present an alternative parallel description in dual space, involving the
transposes of all vectors and matrices which are employed in this work. The twofold dimensions appearing
in the main discussion will be therefore reversed looking at this dual case. However, such issue will not be
discussed here, in order to keep the formalism as simple as possible.
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these problems end up with the construction of some (M × N )-dimensional descriptor
matrix X.

The setup characteristics of the involved description space dimensions in the cases
of particle position, precludes the use of the left dimension parameter: M = 3, because
three-dimensional space is involved; while at the same time usually the right dimen-
sion parameter becomes: N � 3, with the exception within the conformational studies
of small molecules, as di- or triatomic structures. However, in the last case of mole-
cular discretization problems, dimensions at the left (row) and right (column) sides
habitually are related by the distinctive property: 3 � M � N .

In any case one can speak about a twofold dimension or dimensionality, character-
ized by the respective choices of M and N , according to the nature of the represented
problem.

The meaning of the elements inside the (M × N ) descriptor matrices is quite obvi-
ous in all the mentioned cases. Noting provisionally an appropriate descriptor matrix
and its elements as:

X = {XIJ |I = 1, M ; J = 1, N } (1)

such a matrix can be decomposed in a set of N column2 vectors:

C = {|cJ 〉 |J = 1, N } ⊂ VM ∧ ∀J : |cJ 〉 = {XIJ |I = 1, M } (2)

which is a vector subset belonging to some M-dimensional column vector space. Let
me call these vectors object vectors and the space where they belong the object space
or space of the objects.

However, the same descriptor matrix can be also supposed alternatively partitioned;
now using M row vectors as:

X =

⎛
⎜⎜⎜⎝

〈f1|
〈f2|
...

〈fM |

⎞
⎟⎟⎟⎠ → F = {〈fI | |I = 1, M } ⊂ VN ∧ ∀I : 〈fI | = {X I J |J = 1, N }

(3)

and in such a way that the resultant vector set belongs to an N -dimensional row vector
space. Let me call these vectors descriptor vectors and the space where they belong
the descriptor space, description space or space of the descriptors.

Therefore, insisting in what it has been earlier commented, a common attribute to all
possible description scenarios as these here analyzed, is the existence in every problem
of an attached twofold dimension column–row vector sets, belonging respectively to
object and descriptor spaces.

2 Here the Dirac’s notation is used for column vectors, which will be written using a ket symbol: |a〉, while
row vectors will be noted by a bra symbol 〈a|. Both symbols correspond to the transpose one from the other.
As the field of reference along this study will be the real field, then there is no conjugation involved.
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With these preliminary definitions and comments one can proceed to study the
general properties associated to the descriptor matrices.

3 The geometrical point of view

Observing the descriptor matrix definition in Eq. (1) and its partitions (2) and (3), it
clearly appears that the twofold dimension partitions of this kind describe two types
of sets made of polyhedral vertices in the corresponding attached spaces, differing
slightly according the described situations.

3.1 Position problems

In all the cases of three-dimensional position of particles, the columns of the descrip-
tor matrix X correspond to the N vertices of a three dimensional polyhedron. Conse-
quently, the three N -dimensional vectors, corresponding to the vectors gathering in
turn the {x, y, z} say, position space coordinate sets of all the particles, just describe
a triangle in N -dimensional space.

However, not all the possible infinite N -dimensional triangles are feasible, that
is: not all the triangles one can construct in description space can be attached to the
set of N particles in object space. Any triangle belonging to the feasible set has to
be associated to the following condition, here given as an algorithm, involving the
squared Euclidian distances between all two object position vectors3:

∀P, Q ∈ [1, . . .N ] ∧ P 
= Q : D2
P Q = 〈(|cP 〉 − ∣∣cQ

〉) ∗ (|cP 〉−∣∣cQ
〉)〉=〈|cP 〉 ∗ |cP 〉〉

+ 〈∣∣cQ
〉 ∗ ∣∣cQ

〉〉 − 2
〈|cP 〉 ∗ ∣∣cQ

〉〉
> 0. (4)

To be more precise, any feasible triangle made of the three N -dimensional descriptor
vectors, has to adapt to the property shown in Eq. (4), which can be also alternatively
and formally expressed as:

T = {〈fI | |I = 1, 3 } ∈ �F → ∀P, Q ∈ [1, . . .N ] ∧ P 
= Q : δ
[

D2
PQ > 0

]
, (5)

where �F is the set of feasible triangles, δ [L] is a logical Kronecker delta, which
yields 0 if the logical sentence L is false and returns 1, whenever L is true.

3 The symbol ∗ involving two vectors of a given vector space: ∀ |a〉 , |b〉 ∈ VD : |c〉 = |a〉 ∗ |b〉 → ∀I :
cI = aI bI → |c〉 ∈ VD denotes an inward product, acting on two vectors and yielding another vector of
the same vector space. The symbol involving a vector: α = 〈|a〉〉 = ∑

I aI corresponds to the complete sum
of its elements. Therefore, the expression: 〈|a〉 ∗ |b〉〉 = ∑

I aI bI ≡ 〈a|b〉 corresponds to the scalar product
of the two vectors. In the previous definitions have been used column vectors but the same definitions hold
for row vectors, matrices or hypermatrices. If the involved vectors are functions: | f 〉 ≡ f (r), the inward
products | f 〉 ∗ |g〉 ≡ f (r) g (r) are coincident with products of functions, and the complete sum of a
function becomes an integral over the definition domain:〈 f (r)〉 = ∫

D f (r) dr. A scalar product of two
functions can be written in this notation as: 〈| f 〉 ∗ |g〉〉 = ∫

D f (r) g (r) dr ≡ 〈 f |g〉.
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3.1.1 Origin shifts

Any triangle in a space of arbitrary dimension can be manipulated keeping invariant
the three distances between its vertices, using in any order the three possible origin
shifts:

∀I, J, K ∈ (1, 2, 3) ∧ I 
= J 
= K :
〈

I gJ

∣∣∣ = 〈fJ | − 〈fI | ∧
〈

I gK

∣∣∣ = 〈fK | − 〈fI | ;
(6)

such origin shift is the same as to transform the vector 〈fI | → 〈0|, thus it is also
equivalent to consider one vertex of the triangle as the origin of coordinates, while
constructing the two remnant triangle vertices with the shifted vectors

{〈
I gJ

∣∣ ; 〈
I gK

∣∣}.
The resulting origin shifted triangle, provides the same information about the fea-

sible triangle, but with only two linearly independent vectors needed instead of three.
Such a property is common to linearly independent sets of vectors: the origin shift
transform them into a set of cardinality lowered by one unit [3].

3.2 Molecular description problems

When the problem consists of a number of N molecular structures, each one attached
to some M-dimensional vector of molecular descriptors, as commented before the
resulting descriptor matrix X is of dimension (M × N ). The N -dimensional row vec-
tors describe a polyhedron of M vertices. As the set of distances between these vertices
is made in general of different lengths, it can be called a N -dimensional descriptor
complex. At the same time, the M-dimensional set made by the N vector columns,
constitutes the vertices of an object complex, located within such a M-dimensional
vector space.

In classical quantitative structure-properties relations (QSPR), the descriptor matrix
is constructed as a first step to be used to find out linear functionals, connecting the
descriptors with an appropriate set of optimal scalars to yield a model to estimate
molecular properties. In QSPR, several basic algorithms performing this task are used,
depending on statistical procedures; see for instance [10–21]. In order to avoid sta-
tistical overparameterization, some modeling algorithms project the descriptor space
into an optimal parameter space of fewer dimensions: m  M. So, in this way,
after such statistical manipulation the projected descriptor matrix becomes (m × N )

dimensional.
However, in general such dimension reducing statistical procedures produce well

studied problems; see for example references [13,14]. In addition, the so-called dimen-
sionality paradox [1,2,4] also appears in classical QSPR problems within the descrip-
tor space environment.

3.2.1 The dimensionality paradox

The origin of the dimensionality paradox might be associated to the manipulation
of descriptor spaces. It can be connected with the fact that, starting with a set of
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different molecules, an initial set of M-dimensional linearly independent descriptor
vectors is built up, in order to represent the chosen molecular structures. Subsequent
dimension reduction to m-dimensional vectors of the described molecular set, with
the additional relationship: m  N  M , produces a newly described molecular
set, consisting of N linearly dependent described molecules. Dimensionality paradox
appears at this stage, since such a result contradicts the fact that the initially described
molecular set is made of different linearly independent structures, logically attached
to different molecules. Dimensionality paradox can be obviated studying any QSPR
problem within the object space, the space of molecules instead of the descriptor space,
for more details see [1,2].

The projected m row N -dimensional vectors of the classical QSPR manipulation
form a complex with fewer vertices than the original setup, of course. When taking
into account that just the top dimension 3 must be substituted by m, then the same
properties as in Eqs. (4) and (5) can be transferred in the present framework, and Eq.
(6) is equally valid. This is equivalent to say that not all complexes of the reduced
number of m vertices are feasible at any representation level.

3.3 Résumé

In fact, after this preliminary discussion, one can realize that both position coordinate
and description problems can be seen as particular cases of a unique formalism, where
a set of N objects is described within an M-dimensional space by a set of chosen
vectors.

This process produces a descriptor matrix of dimension (M × N ) and in company
of this mathematical construct, also appears a twofold dimensionality framework.

Two complexes made of M and N vertices respectively can be assembled, because
of the inherent twofold dimensionality of all the problems connected with the nature
of descriptor matrices.

4 Object origin shifts

Considering now again the column partition of the descriptor matrix, C =
{|cJ 〉 |J = 1, N } as defined in Eq. (2), the associated N -vertex, M-dimensional object
complex can be origin shifted in a similar way as when the descriptor complexes have
been studied. In any case, then one of them can be chosen to perform an origin shift in
the same way as in the previous position problems. It is a matter to define the shifted
column vector vertex sets:

∀I = 1, N : DI =
{
∀J = 1, N ∧ J 
= I :

∣∣∣I dJ

〉
= |cJ 〉 − |cI 〉

}
(7)

The set of shifted object complexes {DI |I = 1, N } can be considered as several
equivalent ways to observe the object set partition of the descriptor matrix. In every
shifted set the distances between the complex vertices are invariant.
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However, by origin shifting the angles subtended between two vertices are not
invariant. To see this, consider two vertices {P, Q} shifted with two different vertex
shifts {R, S} say. The corresponding cosine of the subtended angle in the shift by Rcan
be written as:

cos
(

RαP Q

)
=

〈∣∣∣RdP

〉
∗

∣∣∣RdQ

〉〉 (〈∣∣∣RdP

〉
∗

∣∣∣RdP

〉〉 〈∣∣∣RdQ

〉
∗

∣∣∣RdQ

〉〉)− 1
2

while the corresponding cosine in the shift S might be written as:

cos
(

SαP Q

)
=

〈∣∣∣SdP

〉
∗

∣∣∣SdQ

〉〉 (〈∣∣∣SdP

〉
∗

∣∣∣SdP

〉〉 〈∣∣∣SdQ

〉
∗

∣∣∣SdQ

〉〉)− 1
2

It is a matter to develop the two leading scalar products, for instance:

〈∣∣∣RdP

〉
∗

∣∣∣RdQ

〉〉
= 〈

(|cP 〉 − |cR〉) ∗ (∣∣cQ
〉 − |cR〉)〉

= 〈|cP 〉 ∗ ∣∣cQ
〉〉 + 〈|cR〉 ∗ |cR〉〉 − 〈(|cP 〉 + ∣∣cQ

〉) ∗ |cR〉〉

and
〈∣∣∣SdP

〉
∗

∣∣∣SdQ

〉〉
= 〈

(|cP 〉 − |cS〉) ∗ (∣∣cQ
〉 − |cS〉)〉

= 〈|cP 〉 ∗ ∣∣cQ
〉〉 + 〈|cS〉 ∗ |cS〉〉 − 〈(|cP 〉 + ∣∣cQ

〉) ∗ |cS〉〉

and write its difference using the expression:

〈∣∣∣RdP

〉
∗

∣∣∣RdQ

〉〉
−

〈∣∣∣SdP

〉
∗

∣∣∣SdQ

〉〉

= 〈|cR〉 ∗ |cR〉〉 − 〈|cS〉 ∗ |cS〉〉 + 〈(|cP 〉 + ∣∣cQ
〉) ∗ (|cS〉 − |cR〉)〉

which will be non-zero unless |cR〉 = |cS〉. This property indicates that, while distances
are preserved, the angles of the shifted complexes might be different.

The different shifted object complexes generate a set of N shifted descriptor matri-
ces. Their construction can be written by means of the algorithm:

∀I = 1, N : YI =
{
δ [P 
= I ]

∣∣∣I dP

〉
|P = 1, N

}

where the logical Kronecker delta assigns the vector zero to the I -th vector, that is:∣∣I dI
〉 = |0〉.

The set of the shifted descriptor matrices considered as a whole generates a set of
possible linearly independent elements. The linear dependence of the set of matrices:
Y = {YI |I = 1, N } can be tested via the scalar product Gram matrix:
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� = {�I J = 〈YI ∗ YJ 〉 |I, J = 1, N } .

The scalar products forming the Gram matrix can be obtained with the following
algorithm:

∀I, J : 〈YI ∗YJ 〉 =
∑

P

δ [P 
= I ∧ P 
= J ]
〈∣∣∣I dP

〉
∗

∣∣∣J dP

〉〉
.

5 Convex vector origin shifts and the particular case of centroid shift

The origin shifts discussed until now are attached to the raw vectors forming the rows
or columns of descriptor matrices. However, these origin shifts are not the unique
ones which can be performed on the resulting complexes. In fact, the problem has
been discussed in another context [3,6], but here the nature of the object description
merits another discussion for the sake of completeness.

When facing the N object M-dimensional description vector set: C = {|cJ 〉 |
J = 1, N}, then knowing a convex set of scalars, which can be defined as: A ={
αI ∈ R+ |I =1, N

} → ∑
I αI = 1, a new vector can be constructed, such that:

|cA〉 = ∑
I αI |cI 〉.

In fact, convex sets as defined here can be associated to discrete probability dis-
tributions too. Among the infinite number of choices about the elements composing
the convex set A, the specific uniform probability convex coefficient set, provides the
centroid of the object complex, which can be written as: |cC 〉 = N−1 ∑

I |cI 〉.
In general, the shifted object complex vertices by using any vertex convex combi-

nation can be described with the following set:

DA =
{
∀J = 1, N :

∣∣∣AdJ

〉
= |cJ 〉 − |cA〉

}
,

every shifted vector can be expressed in turn via the following equalities:

∀J :
∣∣∣AdJ

〉
= |cJ 〉 − |cA〉 = |cJ 〉 −

∑
I

αI |cI 〉

= (1 − αJ ) |cJ 〉 −
∑
I 
=J

αI |cI 〉 =
⎛
⎝∑

I 
=J

αI

⎞
⎠ |cJ 〉 −

∑
I 
=J

αI |cI 〉

=
∑
I 
=J

αI (|cI 〉 − |cJ 〉) =
∑
I 
=J

αI

∣∣∣J dI

〉

yielding a final result which proves that the operation of shifting every J -th object
complex vertex with respect any arbitrary convex linear combination of object vertices,
becomes the same action as performing the same convex linear combination of the
complex vertices shifted by the J -th vertex.
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This property also provides the following and obvious centroid result, which can
be taken as a particular case of the previous convex shifting:

∀J :
∣∣∣CdJ

〉
= |cJ 〉 − |cC 〉 = N−1

∑
I 
=J

∣∣∣J dI

〉

that is: the centroid shifting of the J -th object, belonging to the complex vertices,
becomes the same as the arithmetic average of all the origin shifted vertices with
respect the J -th vertex.

Because of the descriptor matrix twofold dimensionality problem, the properties
obtained concerning convex combinations of the object complex vertices are totally
reproducible over the descriptor complex vertices. To do this two way exchange of
properties, it is just needed to change columns by rows and to perform the appropriate
changes of dimensions and number of complex vertices.

6 Rotations of descriptor matrices

Origin shifts can be considered well-defined translations within the twofold dimension
spaces of the descriptor matrices. The geometrical point of view which has been
adopted until now can also lead to study rotations of the elements of such matrices.
Rotations of descriptor matrices can be performed over their twofold dimensions.

As it is well-known, rotations in vector spaces of arbitrary dimension, defined over
the real field, as the proposed problems are, correspond to multiplication by orthogonal
matrices U = {UIJ} of the appropriate dimension, which in general, besides to be
square and non-singular, possess as the main property: UUT = UT U = I; that is,
the transpose matrix: UT = {U (T )

IJ = UJI} has to be coincident with the inverse:
UT = U−1. Therefore, the orthogonal matrices determinant is necessarily associated
to the property: Det |U| = ±1.

Rotations of any (M × N ) descriptor matrix can be easily performed by multiplying
on the left by an orthogonal (M × M) matrix: M U and on the right by an (N × N )

orthogonal matrix: N U: (M U) X (N U) → XU . The resulting rotated matrix XU has
the twofold dimension invariant. Of course, rotations might be performed just on the
left or on the right only, besides of both sides as earlier shown.

Left rotations act on descriptor space vectors, while left rotations act on object
space vectors. Rotations leave invariant both distances and angles of the corresponding
complexes. However, suppose a rotation is performed over the descriptor complex by
an orthogonal (M × M) matrix V, named in this way in order to simplify the previously
used notation, that is:

VX = Y → ∀I, J : YIJ =
∑

K

VIK XKJ.

This is equivalent to transform the column partition of the descriptor matrix in the
following way:

∀J = 1, N : V |cJ 〉 = |dJ 〉 → Y = (|d1〉 ; |d2〉 . . . |dN 〉) .
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Scalar products within the rotated column vectors remain invariant, as it is well-known;
they can be written:

∀P, Q ∈ [1, . . .N ] : 〈|dP 〉 ∗ ∣∣dQ
〉〉 =

∑
I

dI P dI Q =
∑

I

∑
K

∑
L

VI K VI LcK P cL Q

=
∑

K

∑
L

(∑
I

V (T )
L I VI K

)
cK P cL Q =

∑
K

∑
L

δL K cK P cL Q

=
∑

K

cK P cK Q = 〈|cP 〉 ∗ ∣∣cQ
〉〉

Therefore the distances and angles subtended by the column spaces of the descriptor
matrices X and Y are invariant. However, once performed the rotation, the resultant
structure of the row space of the rotated descriptor matrix can be written easily as:

Y =

⎛
⎜⎜⎜⎝

〈g1|
〈g2|
...

〈gM |

⎞
⎟⎟⎟⎠ → ∀I = 1, M : 〈gI | =

{
YI J =

∑
K

VI K X K J |J = 1, N

}

consequently the scalar products of the resultant rows can be written:

∀P, Q ∈ [1, . . .M] : 〈〈gP | ∗ 〈
gQ

∣∣〉 =
∑

S

∑
K

∑
L

VP K VQL X K S X L S

=
∑

K

∑
L

VP K VQL 〈〈fK | ∗ 〈fL |〉

yielding an expression, which is no longer invariant. Thus, when performing rotations
on the object complex the descriptor complex is deformed according to the chosen
rotation.

For instance, when rotating the coordinate vectors of a position problem, the relative
positions of the described particles in three dimensional spaces are preserved, but
the triangle of the position coordinates vectors in N -dimensional space might be
changed accordingly. Of course, this is reversed when performing rotations on the
descriptor space, which permit the invariance of the corresponding complex, but the
object complex is no longer invariant, becoming deformed with respect the initial
structure.

7 Gram matrices generated in object and descriptor spaces

Once a descriptor matrix is known, one can manipulate it, according to the twofold
final dimension of the wanted resultant space. For instance, in QSPR one can obtain
two kinds of square Gram matrices. One can be generated with a dimension (M × M)
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which corresponds to the descriptor space:

�D = XXT → �D;I J = 〈〈fI | ∗ 〈fJ |〉 =
∑

K

X I K X J K ≡ 〈fI |fJ 〉 (8)

While the other can be of dimension (N × N ) and might be obtained via the product:

�O = XT X → �O;I J = 〈|cI 〉 ∗ |cJ 〉〉 =
∑

K

X K I X K J ≡ 〈cI |cJ 〉 (9)

and corresponds to the object space.
The matrix defined in Eq. (8) is the basic starting point of classical QSPR procedures

[10–21], while the matrix defined in Eq. (9) is promoted by quantum QSPR procedures,
as a mean to avoid the dimensionality paradox and obtain similar results as in classical
QSPR, see for example [1,2].

7.1 The three dimensional position cases

It is to be noted the structure of the matrix described in Eq. (8) when the descriptor
space is of dimension three. Obviously enough, the resultant matrix will be (3 × 3) in
the cases of particle description in three-dimensional spaces. To simplify the notation
the descriptor matrix and the corresponding transpose can be written by means of the
column matrix:

X =
⎛
⎝

〈x1|
〈x2|
〈x3|

⎞
⎠ ∧ XT = ( |x1〉 |x2〉 |x3〉

)

→ �D = {
�D;I J = 〈xI |xJ 〉 ≡ 〈|xI 〉 ∗ |xJ 〉〉 |I, J = 1, 3

}

where the three row vectors {〈xI | |I = 1, 3 } contain the respective particle {x, y, z}
coordinates.

Thus defined, the elements of the symmetric matrix �D contains scalar products
of the all pairs of the whole set of coordinates. In fact, such matrix is closely related
to the tensor, which appears in the background framework of both the moment of
inertia and quadrupole tensors of a many particle system. Therefore, as the previously
mentioned tensors are respectively weighted by masses and charges, the matrix �D

might be considered as an unweighted characteristic of the set, representing every
precise situation of the many particles three dimensional positioning.

Principal axis and components, what is the same eigenvectors and eigenvalues, of
�D could be valuable to describe schematically the spatial distribution of particle
swarms. In fact, the matrix �D describes both moment of inertia and quadrupole
moment of an uniform particle set, where each particle element possess the same
mass and the same charge, like an electron, atomic gas or plasma made of the same
particles. It can be called characteristic form tensor and attached to any particle swarm
or molecular conformation, despite it is not weighted.
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7.2 The molecular conformation scenarios

In molecular conformations particle systems positioning, all linear molecules will
possess two null eigenvalues of the characteristic molecular form tensor, while pla-
nar molecules will have one null eigenvalue. Three degenerate eigenvalues preclude
spherical molecules, while two degenerate eigenvalues will denote elongated molecu-
lar structures in one space direction. The eigenvalue set of the molecular characteristic
form tensor could be a good résumé of the attached molecular structure and might be
employed as a molecular descriptor, as similar other molecular parameters of this kind
have been employed [26].

Even one can use the molecular characteristic form tensor to obtain simple dif-
ferentiation discrete descriptors, permitting to construct optical isomers schematic
numerical sketches. As one can describe in this case two conformation descriptor
matrices: {XR; XS}; then, the eigenvalues of both �D matrices:

R�D = XRXT
R ∧S �D = XSXT

S →R �D =S �D = GD

will be the coincident, but different from the hybrid matrices:

RS�D = XRXT
S ∧S R �D = XSXT

R →S R �D =
(

RS�D

)T
.

Therefore it might be worthwhile to consider the eigensystem of the symmetric matrix:

ARS = XRXT
S + XSXT

R

when compared with the pure R or S characteristic molecular form tensors; that is:
the eigensystem of the difference matrix:

�RS = 1

2

(
XRXT

R + XSXT
S

)
− 1

2

(
XRXT

S + XSXT
R

)
= GD − 1

2
ARS

It is plausible to expect that the �RS eigensystem can be a good measure of the
structural difference between both isomers.

A recent study has proposed the definition of a plane of best fit [22], as a way
to characterize and quantify the three dimensional character of molecular structures,
alternative to the ones reported by other authors [23–25] and of these summarized by
Todeschini and Consonni [26].

In any case, one can be confident that the molecular characteristic form tensor
obtained as a consequence of a more general framework involving descriptor matri-
ces, will provide a set of logical parameters to tackle with molecular shape in three
dimensional spaces. Moreover, the related quadrupole moment tensor principal com-
ponents have been used several years ago [27] and nowadays [28] in our laboratory as
an initial positioning to orient in a general way coordinate axis of molecular structures.
Therefore, the simplified configuration provided by the molecular characteristic form
tensor might be of interest for these problems.

123



J Math Chem (2013) 51:1569–1583 1581

7.3 Quantum similarity matrices

The Gram matrix over the object space is equivalent to the quantum similarity matrix
[29,30] constructed from the density function tag set of any quantum object set [31,
32]. This connection between both matrix structures corresponds to the following
construction quantum similarity algorithm.

Starting form a set of density functions associated to a set of well-defined quantum
objects, usually molecules: P = {ρI (r) |I = 1, N }, then the row vector which contains
as elements the densities of P can be constructed as:

|X〉 = (
ρ1 ρ2 · · · ρN

) ≡ ( |ρ1〉 |ρ2〉 · · · |ρN 〉 )
(10)

A matrix like (10) can be named as continuous descriptor matrix. The vector expressed
in Eq. (10), is the equivalent to a discrete descriptor matrix, as the one presented at
the beginning in Eqs. (1) and (2), with the left row dimension becoming infinite
though. That is, one can express the twofold dimension corresponding to this situation
as: (∞ × N ). Thus the equivalent to the object Gram matrix (9) can be expressed
formally by means of the so called similarity matrix4:

�O = [[|X〉 ⊗ |X〉]] ≡ [[|X〉 〈X|]] → �O;I J = Z I J = 〈ρI ρJ 〉 =
∫

D
ρI (r) ρJ (r) dr

where in addition it has been used the habitual symbol for the similarity matrix and
its elements: Z = {Z I J }. Therefore, there is a clear connection between quantum
similarity matrices and Gram matrices within object spaces in discrete descriptor
matrices.

8 Discussion and results

Straightforward analysis of real (M × N ) descriptor matrices, connected with theoreti-
cal chemical and physical problems reveals several interesting features. The discussion
of these common elements permits to employ a geometrical point of view to disclose
properties, transformation characteristics and application possibilities common to any
problem which can be associated to descriptor matrices. The proposed insight can be
useful from Monte Carlo statistical mechanics up to QSPR.
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